Answers to selected Imposing Coordinates problems

Answer 2.1 (a) \(d = \sqrt{2}, \Delta x = 1 = \Delta y = 1 \). (b) \(d = \sqrt{5}, \Delta x = -1, \Delta y = -2 \). (c) \(d = \sqrt{34}, \Delta x = 5, \Delta y = -3 \). (d)
\[d = \sqrt{10t^2 + 2t + 1}, \Delta x = 3t, \Delta y = 1 + t. \]

Answer 2.2 (a) True. (d) \(\Delta x = s - a, \Delta y = t - b \). (e)
\[\Delta x = a - s, \Delta y = b - t \]. (f) \(\Delta x = 0 \) means the points line on the same vertical line; \(\Delta y = 0 \) means the points line on the same horizontal line.

Answer 2.3 Just after 12:29 PM that afternoon.

Answer 2.4 (a) Erik=6.818 mph, Ferry = 17.6 ft/sec. (b) Impose coordinates with Kingston the origin and units of miles on each axis; then Edmonds is located at (1,0) and Erik's sailboat is at (3,2). The table rows have these entries:

<table>
<thead>
<tr>
<th>((0,0))</th>
<th>((0,1))</th>
<th>((1,0))</th>
<th>((1,4))</th>
<th>((12,0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3,2))</td>
<td>((3,1.9432))</td>
<td>((3,1.2045))</td>
<td>((3.2 - 6.818t))</td>
<td></td>
</tr>
<tr>
<td>3.606</td>
<td>3.491</td>
<td>2.003</td>
<td>(\sqrt{(12t - 3)^2 + (2 - 6.818t)^2})</td>
<td></td>
</tr>
</tbody>
</table>

(c) Use coordinates as in (b), then when the ferry reaches (3,0), Erik is at (3.0.296). (d) CG vessel does not catch the ferry before Edmonds.

Answer 2.5 (a) \(d(t) = (65.3)t \). (b) 227 minutes, 198.4 miles (c) \(t = 80.86 \) seconds.

Answer 2.10 If the origin is the gliderport: (a) \((200,210) \). (b) \((550, -425) \). (c) \((300, -500) \). (d) \((0,0) \). If the origin is the hang glider: (a) \((0,0) \). (b) \((330, -635) \). (c) \((100, -710) \). (d) \((200, -210) \). If the origin is the boat: (a) \((-100, 710) \). (b) \((250, 75) \). (c) \((0,0) \). (d) \((-300, 500) \).

Answer 2.11 (b) 6 + 2\sqrt{5}. (c) 62.83 sec. (d) \((1,0.67) \). (e) 12 seconds. (f) 24 seconds. (g) 36 seconds to 49.42 seconds.

Answer 2.12 (b) \(t = 2 \). (c) \((3,3) \). (d) spider=(\(\frac{1}{3}, \frac{1}{3} \)). (e) 1.5 feet. (f) Spider reaches \((9,6) \) when \(t = 4 \); ant reaches \((9,6) \) when \(t = 3 \). (g) spider speed is \(\sqrt{5} \) ft/sec; ant speed is \(\sqrt{5} \) ft/sec.

Answer 2.13 49.92 mph.

Answer 2.14 141.46 miles. They are 300 miles apart at time 0.826 hr = 49.6 minutes.

Answer 2.15 (a) Final answer is correct, but second equality is wrong. (b) Final answer should be \(4xy \); key fact is that \((x + y)^2 = x^2 + 2xy + y^2 \), etc. (c) Answer and steps correct.

Answer 2.16 (a) \(x = \pm \sqrt{\frac{1 + \beta}{\alpha^2}} \). (b) \(x = \frac{\beta}{\alpha + \beta} \). (c) \(x = \frac{0}{\alpha \beta + 1} \).

Answer 2.17 (a) \(\Delta = 4 \). (b) \(\Delta = 1 \). (c) \((a - b)(a + b) \). (d) \(a^2 - ab - 6b^2 \). (e) \(ab \).

Answer 2.18 (a) \(5t^2 + 6t + 5 \). (b) \(2t^2 + 4t \). (c) \(\frac{2}{t^2 - 1} \). (d) \(\sqrt{5t^2 + 4t + 4} \).